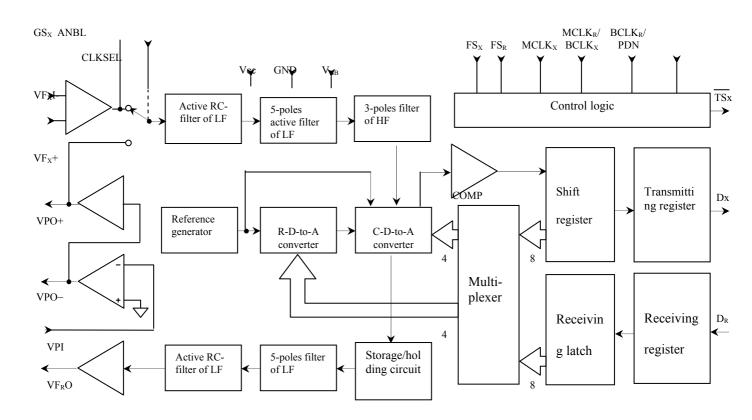
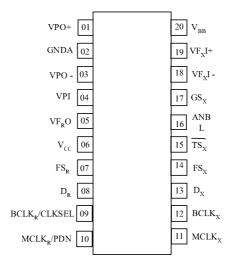

PCM CODEC - FILTER


KK145567

KK145567N is a one-chip PCM-cofidec which converts speech signal into digital form and backwards. The IC is design to operate in synchronous and asynchronous systems and is comprised of:

- reference generator;
- filters on switching capacitors in transmission and receipt channels ;
- two operational amplifiers.

The IC does signal companding under the A-low and full differential processing of analogue signals for reduction of noises. Typical dissipated power is 40mW, under reduced power -1 mW at $\pm 5 \text{ V}$.



Note – COMP – comparator

Figure 1 – Block diagram

KK145567

Pin arrangement in package

Pins	des	crip	tion

Pin №	Symbol	Description
01	VPO+	Output of power OA
02	GND	Common output
03	VPO –	Output of power OA
04	VPI	Input of power OA
05	VF _R O	Output of digital signal audio frequency
06	Vcc	Supply 5 V
07	FS _R	Input of receipt cycle synchronisation
08	D _R	Input of digital data receipt
09	BCLK _R /CLKSEL	Input of clock oscillator and selector of basic oscillator frequency
10	MCLK _R /PDN	Input of main clock oscillator and underconsumption control
11	MCLKx	Input of main clock oscillator for transmission
12	BCLKx	Input of clock oscillator for data transmission (synchronised with MCLKx)
13	Dx	Output of transmitted digital data
14	FSx	Input of transmission cycle synchronisation
15	TSx	Output of transmission temporary interval indicator
16	ANBL	Input of feedback loop control
17	GSx	Output of input OA
18	VFxI-	Input of transmitted audio frequency (inverting)
19	VFxI+	Input of transmitted audio frequency (noninverting)
20	V _{BB}	Supply minus 5 V

Supply source

Characteristics		min	max	Unit	
Supply voltage of constant current	V _{CC}	4.75	5.25	V	
	V_{BB}	- 4.75	- 5.25	v	
Consumption power in active mode (without load)			70		
	$VPI = V_{BB}$	_	60	mW	
Consumption power in sleep mode (without load)			5.0	111 VV	
	$VPI = V_{BB}$	_	3.0		

Digital signal strength ($V_{CC} = 5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, GNDA = 0V)

Characteristics		Symbol	Min	Max	Unit
Input voltage Low		\mathbf{V}_{IL}	-	0.6	
Input voltage High		V_{IH}	2.2	-	
Output voltage Low	$D_X \text{ or } \overline{TS}_X$, $I_{OL} = 3.2 \text{mA}$	V _{OL}	_	0.4	V
	$I_{OL} = 3.2 \text{mA}$	· OL			
Output voltage High	$D_X, I_{OH} = -3.2 mA$	V _{OH}	2.4	-	
	I_{OH} = -1.6mA	V OH	V _{CC} -0.5	-	
Input current Low	$GNDA \le V_{in} \le V_{CC}$	I_{IL}	-10	+10	
Input current High	$GNDA \le V_{in} \le V_{CC}$	I_{IH}	-10	+10	mkA
Output current in the third state	$GNDA \le D_X \le V_{CC}$	I _{OZ}	-10	+10	ſ

Dynamic characteristics of digital signals

 $(V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%)$, values of all signals are indicated relatively to GNDA)

Characteristics	Symbol	min	typical	max	Unit
Frequencies of main clock oscillators MCLK _X o MCLK _R	r fm	_			
				-	MHz
			1.544 2.048		
Min width of high or low pulseMCLKx oMCLKRMCLKR	r t _{w(M)}	100	_		ns
Min width of high or low pulse BCLK _x or BCLK _R	· t _{w(B)}	50			ns
Min width of low pulse FS_X or FS_I	tw(FL)	50			ns
Rise time	t _r	50			ns
Fall time	t _f	50			ns
Ratings of data bit synchronisation BCLK _X or BCLK _R	f_B	128		4096	kHz
Presetting time of from low BCLK _X to high MCLK _R	t _{su(BRM)}	50		_	ns
Presetting time from high MCLK _X to low BCLK _X	t _{su(MFB)}	20			ns
Holding time from low $BCLK_X$ ($BCLK_R$) to high FS_X (FS_R)	t _{h(BF)}	20			ns
Presetting time from high $FS_X (FS_R)$ to low $BCLK_X (BCLK_R)$ for long frames	r t _{su(FB)}	80			ns
Delay time from high $BCLK_X$ to setting correct data on D_X	t _{d(BD)}	20		140	ns
Delay time from high BCLK _x to low $\overline{TS_x}$	t _{d(BTS)}	20		140	ns
Delay time of inhibition of output data D_X relatively to 8 th clock pulse BCLK _X	$t_{d(ZC)}$	50		140	ns
Time of setting correct data after entry of signals FS_X or BCLK (the later of them)	x t _{d(ZF)}	20		140	ns
Time of presetting data D_R relatively to clock pulse BCLK _{R edge}	t _{su(DB)}	0		_	ns
Holding time from low BCLK _R to switching off D_R	t _{h(BD)}	50			ns
Presetting time from high level FS_X (FS _R) to low level BCLK _X (BCLK _R) under synchronisation standard Short Frame	t _{su(F)}	50			ns
Holding time from low level $BCLK_X$ ($BCLK_R$) to low level FS_X (FS_R) for synchronisation Short Frame	t _{h(F)}	50			ns
Holding time from 2^{nd} period of low level BCLK _X (BCLK _R) to l level FS _X (FS _R) for synchronisation Long Frame	ow t _{h(BFI)}	_	50	ĺ	ns

Analogue electrical characteristics (V_{CC} = 5V \pm 5%, V_{BB} = -5V \pm 5%, VF_XI- connected to GS_X)

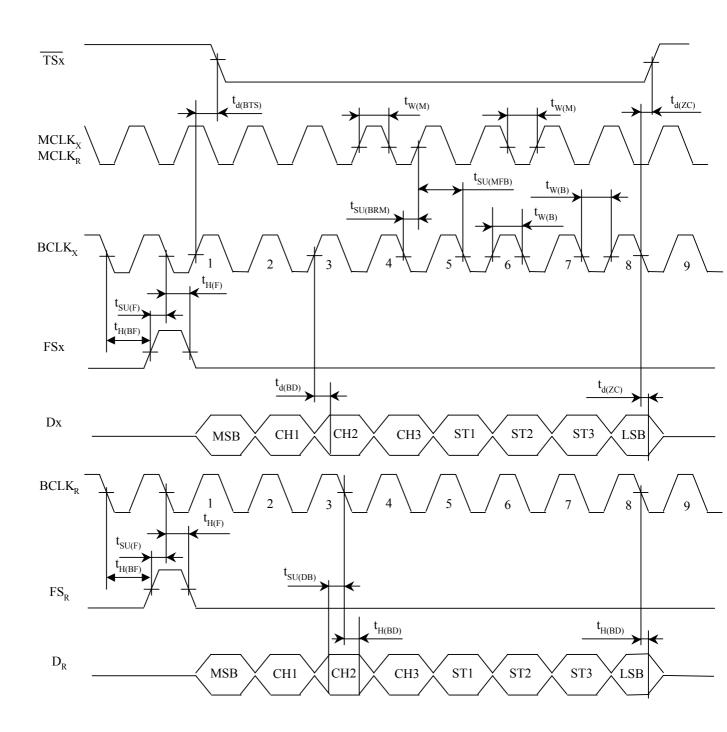
Characteristic		min	typical	max	Unit
Input current (-2.5 V \leq V _{in} \leq 2.5 V)	VF_XI+ , VF_XI-	_	-	± 0.2	mkA
Input impedance to GNDA at frequency 1 kHz	VF_XI+ , VF_XI-	10		—	MOhm
Input capacitance	VF_XI+ , VF_XI-	_		10	pF
Input bias voltage GS _X Op Amp	VF_XI+ , VF_XI-	_		± 25	mV
Range of input common-mode voltages	VF_XI+ , VF_XI-	- 2.5		2.5	V
Amplification ratio without feedback GS _x Op Amp		75		_	dB
$(R_{load} \ge 10 \text{ kOhm})$					
Attenuation factor of in-phase components on out. VF_X	$I+, VF_XI-$		65		dB
Frequency band of unity gain on out. GS _X Op Amp			1000		kHz
$(R_{load} \ge 10 \text{ kOhm})$					
Equivalent input noise between out. VF _X I+, VF _X I- and C	SS_X		-20		dBm
Load capacitance for GS _X Op Amp		0		100	pF
Output range of voltages for GS_X $R_{load} = 10$ k	Chm relat. GNDA		- 3.5	+ 3.5	V
$R_{\text{load}} = 600$	Ohm relat. GNDA		- 2.8	+ 2.8	
Output current (-2.8 V \leq V _{out} \leq 2.8 V)	GS_X, VF_RO		± 5.0	—	mA
Output impedance on out. VF_RO in the frequency range from 0 to 3.4 kHz			1		Ohm
Load capacitance for output VF _R O		0		500	pF
Bias voltage for output VF _R O relatively to GNDA		_		± 100	mV
Noise abatement on supply on transmission					
(+) – from 0 to 100 kHz;		45			dB
(-) - from 0 to 100 kHz;		45			

Analogue transmission characteristics

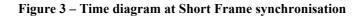
 $(V_{CC} = 5 V \pm 5\%, V_{BB} = -5 V \pm 5\%, GNDA = 0 V, dBm0 = 1.2276Vrms = 4 dBm with load 600 Ohm, FS_X = FS_R = 8 kHz, BCLK_X = MCLK_X = 2.048 MHz at synchronous operation, VF_{XI-} connected to GS_X)$

Characterist	ic	Thro chai		Chanı	nel AD	Chanr	nel DA	Unit
		min	max	max min max		min	max	
Change of amplification ratio (relation frequency 1.02 kHz, $T_A = 25 \circ C$ $V_{CC} = 5V$, $V_{BB} = -5V$)		_	_	-0.25	0.25	-0.25	0.25	dB
Change of amplification ratio	0 to 70°C	_	_	_	±0.03	_	±0.03	dB
depending on temperature	$-40 \text{ to} + 85^{\circ}\text{C}$	_	_	_	±0.06	_	±0.06	
Change of amplification ratio dependence voltage ($V_{CC} = 5V, \pm 5\%, V_{BB} = 5$)	nding on supply V ±5%)	_	-	-	±0.02	-	±0.02	dB
Change of amplification ratio	from 3 to -40 dB	-0.4	0.4	-0.2	0.2	-0.2	-0.2	dB
depending on signal strength	from -40 to -50 dB	-0.8	0.8	-0.4	0.4	-0.4	-0.4	
(relatively to level -10 dBm0 on frequency 1.02 kHz) *	from -50 to -55 dB	-1.6	1.6	-0.8	0.8	-0.8	-0.8	
Total distortions of signal at	3 dВм0	33	-	33	-	33	-	dB
frequency 1 kHz	0 ÷ - 30 dBm0	35		36		36		
	-40 dBm0	29		30		30		
	-45 dBm0	24		25		25		
	-55 dBm0	15		15		15		
Total distortions with pseudonoise	-3 dBm0		_	28	-	28.5	—	dB
as per CCITT G.714	6 ÷ - 27 dBm0			35.5		36		
	-34 dBm0			33.5		34.2		
	-40 dBm0			28.5		30		
	-55 dBm0	13.2		13.5		15		
Noise of "silent" channel (for troug channel AD psophometrically weig		_	-70	_	-70	-	-83	dBm
Amplitude-frequency characteristic		_	-40	_	-40	-0.15	0	dB
(AFC).	50 Hz	_	-30	_	-30	-0.15	0	
(Relatively to level 0 dBm0 at	60 Hz	_	-26	_	-26	-0.15	0	
frequency 1.02 kHz) *	200 Hz	_	_	-1.0	-0.4	-0.15	0	
	from 300 to 3000 Hz	-0.3	0.3	-0.15	0.15	-0.15	0.15	
	3300 Hz	-0.70	0.3	-0.35	0.15	-0.35	0.15	
	3400 Hz	-1.6	0	-0.8	0	-0.8	0	
	4000 Hz	_	-28	-	-14	—	-14	
	4600 Hz	_	-60	-	-32	—	-30	
Noise level in the frequency range		-	-48	-	-48	-	-48	dB
(relatively to level 0 dBm0 at frequent transmission and receipt) *	-							
Attenuation of parasitic	from 4600 to 7600 Hz	_	-30	-	_	_	-30	dB
harmonics beyond the limits of	from 7600 to 8400 Hz	_	-40	-	_	—	-40	
gating frequency VFRO VFRO	from 8400 to 100000	_	-30	-	_	-	-30	
(Relatively to input signal of	Hz							
frequency 300-3400 Hz and								
level								
0 dBm0)								

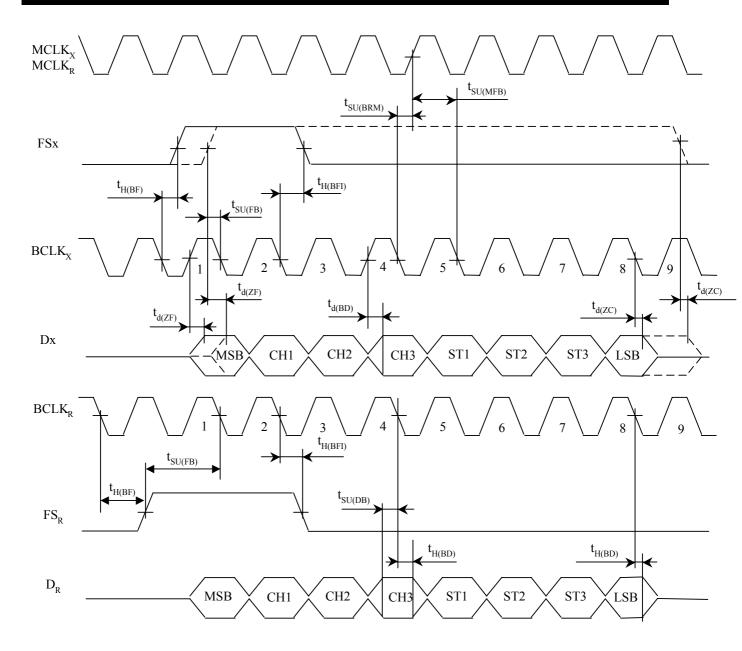
continued


Characteristic		Trough channel		Channel AD		nel DA	Unit
	min	max	min	max	min	max	
Noise of "silent" selected channel (for frequency	-	-70	—	_	—	-70	dBm
8 kHz. Input – GNDA)							
Absolute delay (on frequency 1600 Hz)	_	_	_	315	—	215	mks
Group delay relatively to signal of frequency 1600 Hz							
$500 \div 600 \text{ Hz} \\ 600 \div 800 \text{ Hz} \\ 800 \div 1000 \text{ Hz} \\ 1000 \div 1600 \text{ Hz} \\ 1600 \div 2600 \text{ Hz} \\ 2600 \div 2800 \text{ Hz} \\ 2800 \div 3000 \text{ Hz} \\ \end{array}$	_		_	220 145 75 40 75 105 155	-40 -40 -30 -	- - 90 125 175	mks
Crosstalk of signal of frequency 1020 Hz for AD or DA	_	_	_	-75	—	-75	dB
Intermodulation distortions of two signals with amplitude	_	-41	_	-41	_	-41	dB
from minus 4 to minus 21 dBm0 for the range 300 ÷ 3400 Hz							
* Parameters of the channels A/D and D/A are guara	anteed b	by meas	suring t	hrough	channe	el param	ieters

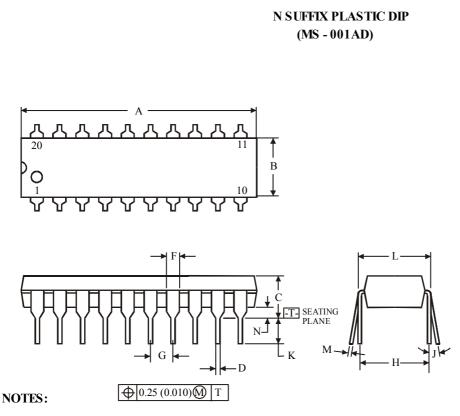
Power OA


Characteristic	min	typical	max	Unit
Input current $(-1 V \le VPI \le 1V)$ VPI	-	-	± 0.5	mkA
Input resistance $(-1 \text{ V} \le \text{VPI} \le 1 \text{ V})$ VPI	5	10	_	MOhm
Input bias voltage (VPI connected to VPO-) VPI	_	_	± 50	mV
Output resistance VPO-or VPO+	—	1	_	Ohm
Amplification ratio from VPO– to VPO+ (R_{load} = 300 Ohm, VPO+ to GNDA, level on VPO– equals 1.77Vrms, 3 dBm0)	_	-1	_	V/V
Maximum level 0 dBm0 for better than ± 0.1 dB linearity in the range more than from -10 dBm0 to 3 dBm0 (for R _{load} between VPO+ and VPO)				
$R_{load} = 600 \text{ Ohm}$	3.3	_	_	Vrms *
$R_{load} = 1200 \text{ Ohm}$	3.5			
$R_{load} = 10$ кOhm	4.0			
Noise attenuation on supply on Vcc or V_{BB} (VPO- connected to VPI) VPO-or VPO+ connected to GNDA				dB
0 – 4 kHz	55			
4 – 50 kHz	35			
Differential noise attenuation on supply on Vcc or V_{BB} (VPO- connected	- 0			dB
to VPI), VPO- connected to VPO+, $0 - 50 \text{ kHz}$	50			
Load capacitance ($R_{load} \ge 300 \text{ Ohm}$) VPO+ or VPO- to GNDA	0		1000	
* dBm0 = 1.2276Vrms = 4 dBm				

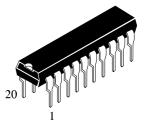
KK145567



At Short Frame synchronisation, synchronisation pulses FSx or FS_R should have duration equal to duration of clock generator MCLK pulses.


KK145567

At Long Frame synchronisation, synchronisation pulses FSx or FS_R should have duration not less than 3 bits of clock generator MCLK.


Figure 4 – Time diagram at Long Frame synchronisation

Package Dimension

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions 0.25 mm (0.010) per side.

	Dimension, mm					
Symbol	MIN	MAX				
Α	24.89	26.92				
В	6.10	7.11				
С		5.33				
D	0.36	0.56				
F	1.14	1.78				
G	2.	54				
Н	7.	62				
J	0°	10°				
K	2.92	3.81				
L	7.62	8.26				
М	0.20	0.36				
N	0.38					